
An lntematicd Journal

computers &
THwlthapplkation6

w Computers and Mathematics with Applications 46 (2003) 1511-1524
www.elsevier.com/locate/camwa

An Adaptive Moving Mesh Method
with Static Rezoning for

Partial Differential Equations

J. M. HYMAN
Theoretical Division, Mail Stop B284, Los Alamos National Laboratory

Los Alamos, NM 87545, U.S.A.

SHENGTAI LI
Theoretical Division, Mail Stop B284, Los Alamos National Laboratory

Los Alamos, NM 87545, U.S.A.
and

Department of Computer Science, University of California
Santa Barbara, CA 93106, U.S.A.

L. R. PETZOLD
Department of Computer Science, University of California

Santa Barbara, CA 93106, U.S.A.

(Received and accepted May 2003)

Abstract-Adaptive mesh methods are valuable tools in improving the accuracy and efficiency
of the numerical solution of evolutionary systems of partial differential equations. If the mesh moves
to track fronts and large gradients in the solution, then larger time steps can be taken than if it
were to remain stationary. We derive explicit differential equations for moving the mesh so that
the time variation of the solution at the mesh points is minimized. Moving the mesh based on
this approach allows for larger time steps but does not guarantee that the solution is well resolved in
space. We maintain spatial accuracy when there are new emerging layers or wave fronts by adaptively
rezoning the mesh points to equidistribute an error estimate. When using a multistep integration
method, the past solution values are also interpolated so that the same multistep method can be
used after rezoning. The resulting algorithm has very few problem-dependent numerical parameters
and is appropriate for a large class of one-dimensional partial differential equations. We illustrate the
performance of the algorithm by examples and demonstrate that the proposed algorithm is efficient
and accurate when compared with other adaptive mesh strategies. @ 2003 Elsevier Ltd. All rights
reserved.

Keywords-Moving mesh, Static rezone, Partial differential equations, h-r method, Adaptive
mesh method, Initial value problems.

1. INTRODUCTION
We combine two adaptive mesh strategies to globally distribute the mesh points to improve both
accuracy and efficiency when solving time-dependent partial differential equations (PDEs). The

This work was partially supported by DOE Contract Number DE-FG03-OOER.25430, NSF Grant CCR-9896198,
NSF/ARPA PC-239415, and NSF ACI-0086061.

089%1221/03/$ - see front matter @ 2003 Elsevier Ltd. All rights reserved.
doi: 10.1016/S0898-1221(03)00379-l

Typeset by A,#-‘I&X

1512 J. M. HYMAN et al.

moving mesh (MM) method (also called an r-adaptive method) dynamically moves the grid in
time [1,2] to minimize the numerical errors. The MM methods based on minimizing the time rate
of change of the solution [3-5] define a mesh velocity in terms of the time and space derivatives of
the solution. The solution is changing slowly in this MM reference frame, and larger time steps
can be taken without sacrificing accuracy. However, the mesh distribution may quickly fail to
adequately resolve the solution. When thi$ happens, it is convenient to use a static rezone (SR)
method [6] (also called an h-adaptive method [7]) to regain spatial accuracy. The SR method
freezes the solution and defines a new mesh that reduces the spatial truncation errors, and then
interpolates the solution from the old mesh to the new one. This combination of the MM and SR
methods (the MMSR method) has the potential of being more accurate and efficient than either
approach alone [4,8].

When integrating the solution with a multistep time integration solver during the interpolation
step in a SR method [5,9], the efficiency of the computation can be improved by interpolating the
past values of the solution to the new mesh rather than restarting the integration with a one-step
method. We extend this approach (sometimes called a warm restart [3] to reduce the impact of
the SR on the error estimates for the ordinary differential equation (ODE) or differential algebraic
equation (DAE) solver. This can often allow the solver to continue the integration with a higher
order multistep method and/or a larger time step after the SR.

After reviewing the MM and SR methods that we will be using, we describe how to improve
the methods and provide a detailed description of our algorithm. We then demonstrate the
effectiveness of combining the MMSR method with a finite difference method (FDM).

2. THE MOVING MESH EQUATIONS

Consider the scalar PDE
ut = f(U,%Um), (1)

where f is a nonlinear function of u and its spatial derivatives. For example, a scalar reaction-
diffusion equation could be expressed as

f(u) = wxx + h(u).

Transforming the spatial coordinates to a moving grid system, equation (1) becomes

,fh - u,k = f (u, ‘Ilzr Gz> ,

(2)

(3)

where ti and f are the rates of change of u and x in the moving coordinate system.
The grid velocity 2 can be chosen to minimize the time variation of u and x in the new.

coordinates,

rnp [(ti12 + cr Iii21 = rnp [C ti2 + a521

= min
k E

(f + u,q2 + ak2 .
3

The summations are over all the equations and cy is a dimensional scaling parameter. Solving
this equation locally for i at each mesh point gives

cr~+?i~u, =o,

or equivalently,
k = -f(~,%uZz) ‘Uz.

Q + ‘112 . u, (5)

This strategy minimizes the change in u and x, but the mesh points can easily cross when
solved in discrete time steps. Consider a steep moving front where a mesh point in the front

An Adaptive Moving Mesh Method 1513

moves at a velocity that is nearly equal to the speed of the front, while a mesh point at the
leading edge of the front does not move because the solution is flat there. Unless the time steps
are made sufficiently small, the mesh point moving with the front will cross the stationary point,.

Petzold [5] adds a diffusion-like term to the MM equations that has the effect of smoothing
out the difference in mesh velocities at adjacent points,

o!k + ti 1 u, - A(i),, = 0, (ti,

where X > 0. With these smooth mesh velocities the mesh points are unlikely to cross on a time
step and the MM method can take larger time steps. Petzold also determined that the penahy
term in equation (6) is important even when mesh points are deleted and moved apart by the
SR strategy after every time step. Also note that equation (6) is not invariant under scaling and
translation of u and z.

The MM and SR methods should be, as nearly as possible, invariant under scaling and trans-
lation 2 +- a~ + b, ii +- cu + d to be reliable when the PDEs are not well scaled. In the MM
method, we minimize a weighted Ez norm,

(ig2+?g (I$)‘!
where NPDE is the number of PDEs in the original system, and wi are weights. Note that,
the weight w, takes the place of the scaling constant a! in equations (4) and (6). We define
W x= a(z~ - ze), where normally cy = 1, or a! = 0.1 if w, needs to be decreased compared
with wi. Then the weighted version of equation (6) at xj is given by

We define the weights wi by

Wi = max(]max{ui) -min{~)] ,floor(i)), PI

where the maximum and minimum are taken over all the mesh points. It is easy to check that
if floor(i) is scaIed appropriateIy, the MM equation is approximateiy invariant under scaling
and translation of u and z. The choice of floor(i) can be especially important for components
that start out initially flat and later develop gradients. Generally, floor(i) can be chosen as
max([max(ui} - min{zld}]) w h ere ui is the estimate of solution of the steady state.

The MM system, equations (3) and (8), can be discretized by a finite element, collocation.
finite volume, or finite difference method. In the numerical experiments presented here, all of the
spatial derivatives are discretized by three-point FDMs.

3. THE STATIC REZONE ALGORITHM
Moving the mesh according to equation (8) can result in many fewer time steps than with a

fixed mesh. A disadvantage of MM equations based only on the time variation of the solution
is that the grid points may not move to where they are needed to reduce the spatial errors and
may be overly concentrated in one region and absent in another region where they are needed.
To overcome this deficiency, the SRs are needed to achieve an appropriate distribution of points.

The simplest and safest approach is to perform a SR after every time step [5]. However,
a considerable disadvantage of the SR is that it necessitates interpolation and interrupts the
time stepping process. Frequent interpolation may damage the accuracy considerably, while
interruption of the time-stepping process triggers a time-consuming restart situation for the stiff
solver (in our case the BDF solver DASSL Ill]). In th’ is section, we discuss how to reduce the
number of SRs and their impact on the time integration.

1514 J. M. HYMAN et al.

3.1. Identifying When to Rezone

The SRs can drastically affect the efficiency of the temporal integration, so an SR should be
performed only when it is needed. Thus, we evaluate the mesh function every Kth time step (K
to be prescribed) or at prescribed times [9] and perform SR only if the mesh function is outside
some prescribed bounds.

Because time steps will be smaller when the solution is changing rapidly, we choose to monitor
the mesh function and consider an SR after a specified number (KS,) of temporal integration
steps rather than at fixed times. A similar strategy used by Adjerid and Flaherty [12] found
that KS, = 4 was a reasonable choice for a wide range of problems. In our experiments with the
MMSR algorithm, we found that KS, could be much larger and still retain the same accuracy.
This was especially the case when the solution had converged to a traveling wave or self-similar
solution.

When a new internal layer or wave front emerges, more mesh points are needed to maintain the
same accuracy in the solution. When a wave diminishes, fewer points are needed to resolve the
wave and can be deleted without loss of accuracy. These two situations where an SR is needed
can be identified by monitoring the change in total variation (TV) of the solution at time t,,
which is calculated by

N-l NPDE N-l

i=l j=l

Here we have assumed that all of the solution components have been scaled. We investigated
estimating the total variation of the spatial derivatives u, instead of u to capture these changes
in the wave fronts but found that this approach was not effective. To signal the need for a SR in
these situations, we evaluate the TV by equation (10) on every time step, and compare it with
the value of the previous one (the value for the last SR or initial solution).

The relative change of the total variation

RTv = 2.0 ((TVn - TV”+l) 1
TVn + TV”+l ’

measures the change in the TV of the solution. The mesh function is evaluated and a static
rezone may be considered only if RTV 1 20% (0.2) or RTV < 50% (0.5). These two choices were
determined experimentally to give the best performance over a wide range of problems.

Another case when an SR is needed is when the solution has converged to a traveling wave or
self-similar solution. In this case, the TV does not change much and the MM equation (8) slowly
causes the points to drift from their optimal positions. A SR is needed to pull the mesh points
back to improve the spatial accuracy and resolution in those areas. We solve this problem by
applying an SR after an fixed number (K,,) of temporal integration steps.

The size of KS, depends on the average mesh velocity $ over all of the mesh points and the
maximum allowable spacing AZ,,, of the grid. For a general problem, KS, can be estimated by

where At is the current time step. We also have an option to use a constant KS,, which is
prescribed by the user, in our software. Generally, for problems which do not have emerging
layers or waves fronts, KS, can be very large (e.g., KS, = 100); for problems where emerging
layers or wave fronts are generated constantly, KS, should be small (e.g., KS, = 5).

To avoid unnecessary SRs for solutions that start smooth and later develop steep gradients,
we do an SR only after the TV exceeds a threshold value. In all of our test examples, we set the
threshold for TV to be 0.5 after scaling.

An Adaptive Moving Mesh Method 151-i

When discontinuities (weak solul$ons) occur in the solution of PDEs, some FDMs (for example.
central difference) are unable to resolve them and introduce small spurious oscillations near the
discontinuity which increase the TV and trigger an SR. The refined grid will quickly eliminate
the oscillations, and the refined grid near the discontinuity will be coarsened. On the coarser
grid, the oscillations will reappear and start the cycle again.

A simple but effective approach to smooth a discontinuity is to replace the solution by th(l
averaged value

1
uj +-- 2

(
uj +

(Xj - q-1) uj+1 + (Zj+1 - q) uj-1 (11)
Xjs+l -23-1 1.

The smoothing is performed only before the mesh function is computed. A much better approach
for hyperbolic PDEs is to use a high-resolution upwind FDM [13] or to explicitly include an
artificial dissipation term in the equations.

3.2. Equidistributing the Mesh Function

After an SR has been called for, the next step is to redistribute the grid points based on thr
information about the current solution. Almost any static rezone method can be used in this
step. We used a global equidistribution method. That is, we compute a mesh function for the
current grid and then equidistribute it to find the new locations of the grid points.

How to choose the mesh function for an SR is not as critical as for the moving mesh [14]. In
all of the examples in Section 4, we chose the monitor function based on the first and second
derivatives of the solution

M(u, x) = &I + u; + CQN(AU,)~, (1:jj

where Q~,CY~ are user-defined parameters, and N is the number of grid cells. Then the mesh
function in each cell and the new number of grid points are defined as

m(u, x) = AsM(u, x)! N,,, = C m(u, xl
TOL

(1 1)

The parameter TOL is a user-defined tolerance.
The parameters (~1 and (~2 in (13) are easy to choose for a general problem. For example, we

choose (~1 = 0.1, ~22 = 0 for a hyperbolic problem with shocks, and we choose (~1 = 122 = 0.1 for a
reaction-diffusion problem. The parameter TOL in (14) determines the number of nodes needed
between two adjacent SRs, and is difficult to choose for general problems. We can avoid using
TOL if the initial number of nodes is specified by the user. We increase or decrease the number
of nodes based on the relative change in the total variation. That is, the number of nodes for a
new SR grid is computed by

N TV,,,
- -%d------r new -

TVold
where Nold is the number of nodes before the SR. Because FDMs are more accurate when the grid
spacing is smoothly varying, we apply a global smoothing step [13] as part of the SR algorithm.

To reduce the number of times the solution is interpolated, the number of mesh points is
changed only if the sum of m(u, x) increases by at least 10% or decreases by at least 20%. The
local optimal mesh spacing is obtained by equidistributing m(u, x) by inverse interpolation [61.
Next, the solution is interpolated onto the new mesh.

3.3. Restarting After a Static Rezone

After a new grid is generated and the solution has been interpolated from the old mesh to thp
new one, the simplest approach would be to restart the time integrator as though solving a n(‘w
problem. This is called a full restart by Berzins et al. [lo] and is appropriate for single-step time

1516 J. M. HYMAN et al.

integration methods such as Runge-Kutta methods. For multistep methods, a full restart would
cause the ODE/DAE solver to choose the lowest order single-step method and to reduce the time
step size to satisfy the error tolerance of the lowest order method.

In a warm restart (or flying restart [lo]), the history array used by the ODE/DAE solver is
also interpolated to the new mesh, and the integration is continued with the same step size and
order as would have been used had the SR not taken place. Because the number of equations may
have changed in the SR and the Jacobian matrix is difficult to interpolate accurately, we always
reevaluate the Jacobian matrix in a warm restart. We typically use cubic Bermite interpolation
in our SR and occasionally apply a monotonicity limiter [15].

When the interpolation is not accurate, the implicit ODE solver might still choose a first-
order method after some error test failures because of the large residuals. The mesh velocities
are difficult to interpolate accurately if they are not smoothly varying in space. When the mesh
velocities are smooth functions of 2, the integration will continue after a warm restart with almost
the same time step and order as though the mesh had not been changed. The regularization in
equation (8) smoothes the mesh velocities.

For problems with very steep wave fronts, the interpolation errors in a warm restart may not
be sufficiently small and may cause the ODE solver to reduce the stepsize and/or order. In our
experience, even if the ODE/DAE solver eventually restarts with the first-order method, the time
stepsize is much larger than that for a full restart. Only when the mesh velocities are very rough,
or when there were insufficient mesh points to adequately resolve the solution, did we find that
it was more effective to do a full restart.

4. NUMERICAL EXPERIMENTS

Many of the MM methods that have been proposed in the literature [1,6,8,13] are based on
equidistributing a measurement (e.g., arclength or curvature) of the solution. These equidis-
tributing MM (ED-MM) methods have a fixed number of grid points and can accurately solve
many problems without a static rezone procedure, including problems in which new wave fronts
or sharp gradients develop. In this section, we will compare the MMSR method with the best
performance of the Dorfi and Drury (DD) [16] an moving mesh PDE (MMPDEG) [2] methods. d
In these ED-MM methods, when the shape of the solution changes quickly during a simulation,
mesh points may have to move a large distance to equidistribute the spatial error. When this
happens, the MMSR method is more efficient because grid points are removed from over-resolved
regions and new mesh points are added to unresolved regions by the SR.

The diffusion coefficient X in equation (8) (which determines the smoothness of the mesh
velocity and also affects the minimum spacing during the mesh moving) and the time-step interval
K,, between two static rezones are two of the most important parameters in determining the
effectiveness of the MMSR method.

For problems that require small spacing to resolve shock waves, we chose X = 0.01. In our
examples, this choice allows the grid spacing to shrink down to lo-‘. For problems with smooth
solutions, we chose X = 0.2 and observed that the grid movement was smoother and that the
warm restart technique worked better than X = 0.01.

K,, can be estimated by equation (11) if the solution structure changes rapidly. However, for a
solution that converges to a steady state, K,, can be much larger than (11). We selected K,, = 100
(unless it is stated otherwise) in our software. The warm restart solutions were interpolated with
either cubic Hermite interpolation (the MMSR(WR-M) method) or monotone cubic Hermite
interpolation (the MMSR(WR-C) method). There were no convergence test failures of the DAE
solver in any of these examples, unless noted.

The resulting ODE systems are solved using the double precision version of DASSL [ll], where
an approximate Jacobian is computed by DASSL internally using finite differences. The relative

An Adaptive Moving Mesh Method 1517

and absolute local time stepping error tolerances (in a root-mean-square-norm) are chosen based
on the requirements of the problems.

The acronyms used to describe the computational statistics and numerical methods arc listed
in Table 1

Table 1. Acronyms used in the tables describing the performance of the numerical
methods.

MMM

NSR

NSTP

RES

NJAC

NCTF

NETF

NRJ

CPU

KS,

39~2

E max

WN)

Moving mesh method

Number of SRs

Number of time steps used

Number of residual evaluations (excluding Jacobian evaluations)

Number of Jacobian evaluations

Number of convergence test failures

Number of error test failures

Number of residual evaluations (including Jacobian evaluations)

Total CPU time taken to solve the problem

Maximum number of time steps between SF&

152 difference between the numerical and exact solution

L, difference between the numerical and exact solution

Dorfi and Drury method [16] with N grid points

MMPDEG(N) Moving mesh PDE6 of Huang et al. [2] with N grid points

MMSR(WR-C) MMSR with warm restart and cubic Hermite interpolation

MMSR(WR-M) MMSR with warm restart and monotone cubic Hermite interpolation

MMSR(FR) MMSR method with full restart

4.1. Scalar Combustion Model

This example illustrates that for MM based on time variation, SR is crucial during the formation
of steep fronts in reaction diffusion equations. It is demonstrated that reducing the number of
SF& can greatly improve the efficiency of the MMSR method, and that a warm restart is more
effective than a full restart when the mesh moves smoothly.

Adjerid and Flaherty [17] evaluated their adaptive MM method on the single-step, reaction-
diffusion PDE,

Ut=u,,+0(2-21)exp O<x<l, o<t,
(15)

%(O, q = 0, u(1, t) = 1, u(x,O) = 1,

where D = 5edld. The solution is the temperature of a reactant that gradually increases from
unity until a “hot spot” forms at 5 = 0 causing the temperature to rapidly increase to 2. A front

forms and quickly propagates towards x = 1 with speed proportional to d.
In Figure la, the solution to equation (16) with d = 20 is shown developing a hot spot (ignition)

at t = 0.26 and moving across the domain. We chose the relative and absolute error tolerances
for DASSL to be 10m6, approximated the spatial derivatives with a central three-point FDM,
used the parameters K,, = 100, X = 0.2 (as in [5,9]), and did not smooth the solution. Thertl
are three SRs, all between times 0.26 and 0.27 in the wave-forming phase. The number of grid
points following each SR is 21, 26, and 32. The reference solutions are computed with DASSL
using 600 equally spaced nonmoving grid points.

In Table 2, we compare the MMSR method (see Figure la) with the performance of the
DD method [16] and MMPDEG of Huang et al. [2] with 30 nodes. Note that the warm restart
is more effective than the full restart, although only three SRs are performed. After the warm
restarts, DASSL retained the same order and almost the same step size.

1518 J. M. HYMAN et al.

1.8

1.8

s .-
5

8 i
?

b
i ?

?

0 0.2 0.4 0.8 0.8
X

(a) The solution of the combustion model equation (16) with d = 20 is shown at
times t = 0.0, 0.26, 0.27, 0.28, and 0.29. The MMSR methods prove to be an
effective approach for solving the scalar combustion model.

1

2.2

2

1.8

s
3 1.6

8

1.4

1.2

1

I I I I
MMSR +

reference -------

t

t

i +

i
i
i
+
i

0.2 0.4 0.6 0.8 1

(b) The solution of the combustion model with d = 30 and K,, = 100 is shown at
t = 0.0, 0.24, 0.2405, 0.2410, 0.242, 0.244, and 0.246. The mesh moving is not as
smooth as for d = 20. The MMM based on the time variation is inaccurate without
the SF&.

Figure 1.

An Adaptive Moving Mesh” Method

Table 2. Results of the scalar combustion model with d = 20. The warm restart
method gives a slight improvement in efficiency in this relatively smooth problem.

MMM NSTP NRES NJAC NETF NRJ CPU ELM .&ax

MMSR(FR) 305 505 74 16 1024 0.932 0.0029 0.0150

MMSR(WR-C) 265 470 49 24 813 0.693 0.0012 0.0071

MMSR(WR-M) 290 509 49 25 852 0.741 0.0023 0.0133

DD(30) 452 876 72 56 1668 2.210 0.0013 0.0064

MMPDE6(30) 448 813 60 53 1953 2.452 0.0025 0.0118

Table 3. Results of the scalar combustion model with d = 30. The warm restart
method offered little improvement over the full restart method for this problem with
a relatively steep solution. Although MMSR methods may take more time steps
(NSTP) than the ED-MM methods, the CPU cost is often less because the cost for
each shp is much less for MMSR methods. The average number of nodes for the
MMSR method is 45, compared to 41 for the ED-MM methods. Decreasing K,,
can increase the number of SF& which can dramatically affect the computational
efficiency.

I MMM 1 NSR NSTP NRES NJAC NETF NRJ CPU J3~2 Em.Y

MMSR(FR) 13 1195 1891 235 35 3536 3.12 0.0103 0.143

MMSR(WR-M) 13 1139 1807 202 88 3221 3.04 0.0089 0.123

MMSR(WR-M)* 43 2103 3309 476 204 6641 5.92 0.0101 0.140

MMSR(WR-C) 12 1104 1762 191 81 3099 2.84 0.0096 0.133

DD(41) N/A 700 1244 67 28 1981 4.68 0.0092 0.128

MMPDE6(41) N/A 890 1514 80 16 3034 5.76 0.0098 0.136

*This is for KS, = 504 (KS, = 100 for the others)

The wave front develops much faster when d = 30 (see Table 3 and Figure lb). We decreased
the error tolerances to 10e7. We used KS, = 100, X = 0.1. We also tested with KS, = 50 (see
MMSR(WR-M)* in Table 3. The computation is much slower than when KS, = 100. Sincr
evaluating equation (8) for the mesh does not require additional mesh function evaluations, the
average cost of one residual evaluation for the MMSR method is much less than for an ED-MM
method. Thus, even when the number of residual evaluations (NRJ in the table) is larger for
the MMSR method than for an ED-MM method, the CPU cost is less (see Table 3). The warm
restart did not work as well as when d = 20; DASSL always warm restarted with a first-order
method after an SR. Comparing with the case of d = 20, we find that the mesh velocity for d = 30
is not a smooth function in space. This may be the reason why the integration fails to continue
using a higher order method after a warm restart. The apparent need to adjust the time steps
after an SR causes a large number of error test failures (NETF in Table 3).

The static rezones are especially important to redistribute mesh points to where they are
most needed during the formation of steep wave fronts, even when the number of grid points is
hxed. We also verified that if the time variation MM method is used without the SR, the spatial
resolution quickly degrades and the solution becomes very poorly resolved.

4.2. Burgers’ Equation

The advantage of combining the MM with an SR method is particularly clear when solving
equations where a shock wave forms from smooth initial data. The mesh points track the char-
acteristics of the solution during the shock formation to improve the accuracy and efficiency of
the method. This example demonstrates that an SR can quickly redistribute (e.g., add and/or
delete) the mesh points to resolve the solution, and the integration is more efficient with the
equidistribution done by an SR instead of an ED-MM. It also demonstrates that the KS, should
be kept small if new emerging layers or fronts are generated constantly and rapidly.

1520 J. M. HYMAN et al.

1.6

1.4

s .-
g 1.2
3

1

0.8

0.6

0.4
0’ 0.5 1 1.5 2 2.5 3

X

(a) The results of Burgers’ equation for Dorfi and Drury method (t = 3.2). The
oscillation for DD(121) is because the equidistribution in the DD method requires
additional points. Oscillations disappear when the number of nodes is increased
to 161.

2 1 I , I

1.8

1.6

0.4 1 I I I I I I
0 0.5 1 1.5 2 2.5 3

X

(b) The results of Burgers’ equation for MMSR method (t = 3.2). The average
number of nodes is 123. Because the solution structure is varying rapidly (new
shocks emerge and old shocks disappear constantly), we chose K,, = 5.

Figure 2.

An Adaptive Moving Mesh Method

We consider Burgers’ equation

212
Ut = - (> Tz

+ 0.0001u,,, 5 E (0:3),

with the initial condition

u(x,O) =
1 + cos(27rz), X I 1,

2, x > 1.

The inflow left boundary ~(0, t) = 1 + cos(2rt) and the outflow right boundary are defined by
first-order extrapolation. The initial solution (Figures 2a and 2b) steepens and moves to the
right until a viscous shock forms and propagates to the right boundary and disappears there.
New waves keep on coming from the left boundary and are rapidly transformed into shocks and
propagated to the right. We chose the relative and absolute error tolerance for DASSL to be lo-‘*.

This example is a challenging problem for an ED-MM method, because when a shock dis-
appears suddenly on the right boundary or a new shock forms rapidly near the left boundary.
the equidistribution will be destroyed quickly unless the grid points are rapidly redistributed to
maintain an ED mesh. The rapid redistribution of the mesh results in very small time steps and
many convergence test failures in DASSL.

Note that the redistribution for the ED-MM method is done inside the integration by DASSL.
However, for the MMSR method, this equidistribution is done occasionally, outside the integra-
tion. Using K,, = 5, as estimated by (ll), resulted in 73 SRs. Even with so many SRs, Table 1
shows that the MMSR with the warm restart was the most efficient approach. The full restart
(see Table 4) does not work well for this example.

Table 4. The MMSR method with warm restart is more efficient than the tuned DD
methods for the solution of Burgers’ equation. The MMPDEG failed to solve this
problem because of too many mesh crossings.

MMM NSTP NRES NJAC NRE NETF NCTF CPU ELZ

MMSR(FR) 2709 6282 2533 24013 0 0 35.68 0.3363

MMSR(WR-M) 369 774 186 2076 27 13 3.23 0.0918

MMSR(WR-C) 531 970 232 2594 28 13 4.68 0.1035

DD(121) 1545 3644 781 12235 82 110 44.72 0.1397

DD(161) 1155 2673 593 9196 54 83 44.44 0.0929

The solution in Figure 2b was obtained with a first-order centered FDM combined with local
smoothing as in equation (12). Without the local smoothing operator of equation (12), spurious
oscillations quickly appear when shocks form and increase the number of SRs. In this simuiation.
the parameter X = 0.01 limited the minimum grid spacing to 0.00001. When X = 0.2, we
observed the minimum spacing to be 0.0012 and the shock wave was poorly resolved.

4.3. Near Steady-State Convection Problem

For some convection problems, the MMM will move the mesh points with the flow instead of
where they are most needed to resolve the solution. In those cases, an SR is required occasionally
to redistribute the mesh points.

Carlson and Miller [18] solved the convection equation

ut = -u, + b(z), -4 Ix < 4. (17i

with initial condition ~(2, 0) = 0 and the Dirichlet boundary condition ~(-4: t) = ~(4. t) = 0,
to test the gradient-weighted moving finite element (GWMFE) method. The forcing function
b(z) = O.lzexp(-z’) was chosen so that the steady-state solution has sharp corners at IC = fl.

1522 J. M. HYMAN et al.

-0.005

-0.01

-0.015

-0.02

-0.025

-0.03

-0.035

-0.04

-0.045

-0.05
-4 -3 -2 -1 0 1 2 3 4

Figure 3. The MMSR method concentrates the mesh points in the regions of high
curvature in the solution of the linear hyperbolic PDE (17) at time t = 80.

This seemingly simple linear PDE has been used to illustrate the weaknesses of some adaptive
MM methods [18]. The solution cannot be adequately resolved by a uniform grid of 80 nodes
or by an ED-MM (DD or MMPDE with an arclength monitor) method with 80 nodes. The
GWMFE [18] also fails to solve this problem, even after including a small diffusion term EU,,.

We also added a small diffusion term, 0.0001~,,, to equation (17) and because the solution
is so small, we set floor = 0.05 M max]u] in equation (9) and the absolute and relative error
tolerances to 10m4. The solution and mesh velocities are smooth (see (17)) and we chose X = 0.2,
K,, = 100. The average number of nodes was 72.

There were 14 SFLs, 13 of which occurred during the wave formation and convergence to steady
state. Near steady state, the nodes slowly migrate to the right and concentrate in the right
side of the domain. The later SRS move the points back so that they are better distributed.
This behavior has also been observed for the scaled gradient weighted moving finite element
method (SGWMFE) method [18].

Because the mesh velocity varies smoothly for this problem, it is more efficient to use warm
restarts than full restarts (see Table 5).

Table 5. The warm restart was an effective approach in solving the linear hyperbolic
PDE (17) to steady state.

MMM NSR NJAC NRES NSTP NETF

MMSR(FR) 14 147 920 496 8

MMSR(WR-C) 14 76 727 396 12

5. CONCLUSION

We combine an MM method where the mesh velocities are defined to minimize the time varia-
tion of the solution with a static rezone method to distribute the grid points to reduce the spatial

An Adaptive Moving Mesh Method 152:s

errors. This MM approach allows.the time integration method to use large time steps without
sacrificing temporal accuracy. Because the distribution of the mesh points chosen to minimize
time accuracy may not resolve the solution well in space, a static rezoning of the mesh is needed
to equidistribute the mesh and to reduce the spatial truncation error.

The numerical experiments verify the efficiency and robustness of the combined moving mesh--
static rezone method for solving one-dimensional, time-dependent PDEs with moving wave fronts
or shock waves. The parameters for the method are relatively easy to choose. The bandwidth of’
the linear equations for the MMSR method is less than that for the ED-MM approach.

Because the mesh function is evaluated only in the SR, which happens a few times during
the integration, the average cost of one time step for the simple MMSR method is less than
the ED-MM method where the mesh function is calculated at every residual evaluation. The
overhead of restarting the time integration after an SR can be much reduced by the warm-restart
techniques. Also, new emerging layers or wave fronts are more easily captured and resolved by thcx
adaptive SR procedure than by an ED-MM method with a fixed number of grid points. Becausc~
the equidistribution for the MMSR method is performed independent of the time integration: it
is more efficient for problems when the solution structures vary (e.g., new fronts emerge or old
fronts disappear) constantly and rapidly.

Our MMSR method can be more efficient than other MM approaches for problems with new
emerging layers or wave fronts, and for problems where the solution structures change frequently.
and in situations where fast computation of steady-state solution is required.

REFERENCES
1. J.G. Verwer, J.G. Blom, R.M. Furzeland and P.A. Zegeling, A moving-grid method for one-dimensional

PDEs based on the method of lines, In Adaptive Methods for Partial Diflerential Equations, (Edited by J.E.
Flaherty, P.J. Paslow, M.S. Shephard and J.D. Vasilakis), Society for Industrial and Applied Mathematics.
Philadelphia, PA, 1989.

2. W. Z. Huang, Y. Ren, and R.D. Russell, Moving mesh methods based on moving mesh partial differential
equations, J. Comput. Phys. 113, 279-290, (1994).

3. J.M. Hyman, Adaptive moving mesh methods for partial differential equations, In Advances zn Reactor
Computations, pp. 24-43, American Nuclear Society Press, La Grange Park, IL, (1983).

4. J.M. Hyman and B. Larrouturou, Dynamic rezone methods for partial differential equations in one space
dimension, Appl. Numer. Math. 5, 435-450, (1989).

5. L.R. Petzold, Observations on an adaptive moving grid method for one-dimensional systems of partml differ-
ential equations, Appl. Numer. Math. 3, 347-360, (1987).

6. J.M. Hyman and M.J. Naughton, Static rezone method for tensor product grids, In Lectures zn Applzerl
Mathematics, Volume 22, pp. 321-343, American Mathematical Society, (1985).

7 J.E. Flaherty and P.K. Moore, Integrated space-time adaptive &refinement methods for parabolic systems.
Appl. Numer. Math. 16, 317-341, (1995).

8. A.V. Wouwer, P. Saucez and W. Schiesser, Adaptive Method of Lines, CRC Press, (2001).
9. R.M. Furzeland, J.G. Verwer and P.A. Zegeling, A numerical study of three moving grid methods for one

dimensional partial differential equations which are based on the method of lines, J. Comput. Phys. 89.
349-388, (1990).

10. M. Berzins, P.J. Capon and P.K. Jimack, On spatial adaptivity and interpolation when using the method of
lines, Appl. Numer. Math. 26, 117-133, (1998).

11. K.E. Brenan, S.L. Campbell and L.R. Petzold, Numerical Solution of Initial- Value Problems in Dzflerential-
Algebraic Equations, Second Edition, SIAM, (1995).

12. S. Adjerid and J.E. Flaherty, A moving-mesh finite element method with local refinement for parabolic partial
differential equations, Comput. Meth. in Appl. Mech. Eng. 55, 3-26, (1986).

13. S. Li and L. Petzold, Moving mesh method with upwinding schemes for time-dependent PDEs, J. Comput.
Phys. 131, 368-377, (1997).

14. S. Li, Adaptive mesh methods and software for time dependent partial differential equations, Ph.D. Thesis,
Department of Computer Science, University of Minnesota, (1998).

15. J.M. Hyman, Accurate monotonicity preserving cubic interpolation, SIAM d. Scz. Stat. Comp. 4, 645-654.
(1983).

16. E.A. Dorfi and L.O’c. Drury, Simple adaptive grids for 1-D initial value problems, J. Comput. Phys. 69.
175-195, (1987).

1524 J. M. HYMAN et al.

17. S. Adjerid and J.E. Flaherty, A moving finite element method with error estimation and refinement for
one-dimensional time dependent partial differential equations, SIAM J. Num. Anal. 23, 778-795, (1986).

18. N.N. Carlson and K. Miller, Design and application of a gradient weighted moving finite element code, Part I,
in l-D., SIAM J. Sci. Camp. 19, 728-765, (1998).

